14. CONGRESS OF THE INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY HAMBURG 1980

COMMISSION III
PRESENTED PAPER

HEINRICH EBNER AND MANFRED STEPHANI
 LEHRSTUHL FOR PHOTOGRAMMETRIE
 TECHNISCHE UNIVERSITAT MONCHEN
 ARCISSTR. 21
 POSTFACH 202420
 D-8000 MONCHEN 2

A MATHEMATICAL MODEL FOR THE RECONSTRUCTION OF OBJECTS USING A MULTILENS CAMERA WITH A FOCAL PLANE SHUTTER AND FMC

```
ABSTRACT
The use of a }1800\mathrm{ multi lens photographic equipment in a low
altitude quick flying carrier gives reasonable results only if
there is an adequate system for Forward Motion Compensation
(FMC) in combination with a focal plane shutter. The resulting
"dynamic" images then show certain deformations from the cen-
tral perspective.
A mathematical model for the generation of images by such a
system is presented and used for rigorous reconstruction of
objects from these dynamic images. The accuracy potential of
the whole system is estimated by computer simulations using a
synthetic data set.
```

178.

1. INTRODUCTION

For the special purpose of aerial reconnaissance a high photographic standard of the recorded images is required. Usually cameras of limited metric accuracy are applied in this field. From the point of view of photogrammetry it is of interest to search for the accuracy level which can be attempted, using the photos for object point coordinate determination.
The considerations of this paper are based on a camera with focal plane shutter and with a Forward Motion Compensation (FMC) device. As an example for such a camera may serve the KRb 6/24 from Zeiss, Oberkochen /1/. This camera avoids the projective cylindrical distortions of a panoramic camera on one hand $/ 2 /$. On the other hand the combination of a focal plane shutter and FMC, allowing low flying altitudes, results in an image geometry which is different from the unique central perspective, usually realized in photogrammetry.

In the following chapter 2 the main characteristics of the KRb 6/24 system are stated and the common effect of the focal plane shutter and FMC on the image coordinates is described.
Based on these facts in the chapters 3 and 4 a mathematical model for the dynamic image generation with the described system is presented and used for rigorous reconstruction of object point coordinates from image coordinate measurements, inner orientation data and recordings of the exterior orientation parameters.

Finally in chapter 5 the accuracy potential of the whole system is estimated. by computer simulations.

The use of a focal plane shutter in a photogrammetric equipment without Image Motion Compensation devices and the processing of images obtained by such a system was studied in /4/, /5/.

An introduction to the geometry of a similar camera system, the $K R b 8 / 24$ and general recommendations for the reconstruction of objects from "dynamic" images are given by / 3/. Some comments on the reconstruction model used in /3/ are outlined in chapter 2.
2. DESCRIPTION OF THE SYSTEM KRb $6 / 24$ AND OF THE COMMON EFFECT OF FOCAL PLANE SHUTTER AND FMC ON THE IMAGE COORDINATES

The camera system KRb $6 / 24$ consists of 5 lenses arranged across the flying direction in such a way that the resulting angular field of the camera is more than 1800. See fig. 1. The optical axes of the lenses are diverted by prisms. The effect of the diversion of the optical axes of ± 360 resp. $\pm 72^{\circ}$ is the same as if the cameras were tilted at $\pm 36^{\circ}$ resp. ± 720 in respect to the vertical 1 ine.
All the images from the 5 lenses are recorded on $9.5^{\prime \prime}$ (240 mm) film. Fig. 2 shows the arrangement of an "image array" realized by a KRb $6 / 24$ camera system. In addition the deforma-

fig. 1 Schematic cross sectional view of the lens / film arrangement in the KRb 6/24

fig. 2 Image array of a KRb $6 / 24$ system showing the deformations of a quadratic flat grid
tion of a flat quadratic object grid in the 5 images of an array is represented. From this arrangement of the photos stereoscopic coverage is obtained for every image pair of two adjacent arrays.
The focal plane shutter moves across the flying direction along the whole array. The images are exposured by a slit of the shutter. The width of the slit is selected in accordance with the prevailing illumination conditions.
Table 1 gives some of the system characteristics for the KRb 6/24 camera, which are necessary for the geometric reconstruction of the images.

Number of lenses	5
Principal distance c	57 mm
Single frame format	$50 \times 40 \mathrm{~mm}^{2}$
Total angular field:	
in flight direction	47.40
across flight direction	182.70
Angular velocity v/h	max $5.0 \mathrm{rad} / \mathrm{sec}$
Exposure time	$1 / 150 \mathrm{to} 1 / 2000 \mathrm{sec}$
Shutter slit velocity vs	max $4.33 \mathrm{~m} / \mathrm{sec}$
FMC	rigorous, max $285 \mathrm{~mm} / \mathrm{sec}$

Table 1: Characteristics of the camera KRb 6/24

The angular velocity is the ratio between the forward velocity v of the flying platform and the flying height h. The exposure time is a function of the width of the slit and the velocity v_{s} of the shutter in $y^{\prime}-d i r e c t i o n$.

The incorporated $F M C-d e v i c e ~ c o m p e n s a t e s ~ t h e ~ e f f e c t ~ o f ~ i m a g e ~$ motion rigorously by moving the film in x 'direction. The velocity vF of this film movement is a function of the angular velocity v / h, the principal distance $c j$, the deflection angle vj of the optical axe of lens j of the camera and of the angle α. See figure 3 .

fig. 3 Cross sectional view for lens j

The velocity v_{F} of the film can be expressed as:

$$
\begin{equation*}
v_{F}=\frac{v c_{j}}{h} \frac{\cos \left(v_{j}+\alpha\right)}{\cos \alpha} \tag{1}
\end{equation*}
$$

Equation (1) may be transformed into

$$
\begin{equation*}
v_{F}=\frac{v c_{j}}{h} \frac{\left(\cos v_{j} \cos \alpha-\sin v_{j} \sin \alpha\right)}{\cos \alpha} \tag{2}
\end{equation*}
$$

and with

$$
\tan \alpha=y_{j}^{\prime} / c_{j},
$$

(where y_{j}^{\prime} is the image coordinate related to the principal point of the image j of the array) we find

$$
\begin{equation*}
v_{F}=\frac{v}{h}\left(c_{j} \cos v_{j}-y_{j}^{\prime} \sin v_{j}\right) \tag{3}
\end{equation*}
$$

In order to compensate image motion the FMC - device has to move the film with the speed v_{F} during the exposure time. Evidently equation (3) is valid only for flat terrain. Using equation (3) the displacement of the film can be calculated by integration of:

$$
\begin{equation*}
d x_{j}^{\prime}=v_{F} \cdot d t \tag{4}
\end{equation*}
$$

where:

$$
\begin{aligned}
d x_{j}^{\prime}= & \text { motion increment of, the film, in the image } \\
& \text { coordinate system } x_{j}, y_{j}^{\prime} \\
d t= & \text { time increment }
\end{aligned}
$$

The time increment can be expressed as a function of the image coordinate increment $d y j$ and the velocity v_{s} of the focal plane shutter

$$
\begin{equation*}
d t=\frac{d y_{j}}{v_{s}} \tag{5}
\end{equation*}
$$

Using (3) and (5) the equation (4) becomes:

$$
\begin{equation*}
d x_{j}^{\prime}=\frac{v}{h v_{s}}\left(c_{j} \cos v_{j}-y_{j}^{\prime} \sin v_{j}\right) d v_{j}^{\prime} \tag{6}
\end{equation*}
$$

By integration of the equation (6) one gets

$$
\begin{equation*}
\Delta x_{j}^{\prime}=\frac{v}{h v_{s}}\left(y_{j}^{\prime} c_{j} \cos v_{j}-y_{j}^{\prime 2} \sin v_{j} / 2\right) \tag{7}
\end{equation*}
$$

where
Δx_{j}^{\prime} denotes the correction of the x_{j}^{\prime}-coordinate
that has to be applied for a given y_{j}^{\prime}-coordinate
as a function of c_{j}, v_{j}, v, h and v_{s}.

From equation (7) one can learn that every slit with $y_{j}^{\prime}=$ constant has the same image displacement. Therefore a focal plane shutter slit extending in x^{\prime}-direction is very adequate for the generation of images.
In the following the Forward Motion Compensation is considered as fullfilled according to (7). That means that an approximate compensation as proposed in $/ 3 /$ is not further investigated. Even in the case when it is not possible to calculate the value $\Delta x j$ the correction can be applied, because the effect of Forward Motion Compensation is also noticeable by the deformation of the image of the frames. Without FMC the frames are well defined rectangles of $50 \mathrm{~mm} \times 40 \mathrm{~mm}$. With FMC however the images of the frames show a type of deformation illustrated by fig. 4.

Direction of the film displacement $x^{\prime}, y^{\prime}=$ undivided coordinate system for the whole image array

Direction of the motion of the slit
fig. 4: Deformation of the images of the frames (typical for KRb 6/24 frames)

Whilst the left and right lateral border lines of the centre frame are straight lines, in the side oblique frames the border lines are parabolic curves.

The image coordinate measurements are firstly reduced to the undivided array coordinate system. In a second step the image coordinates $x_{i j}^{\prime} y_{i}^{\prime} j$ of the frame j are obtained from the undi-vided- array coordinates $x_{j}^{\prime} y_{j}^{\prime}(f i g .4)$ by the following reauction procedure:

$$
\begin{align*}
& x_{i j}^{\prime}=x_{i}^{\prime}+\Delta x_{j}^{\prime} . \quad \text { (1eft image) } \tag{8}\\
& y_{i j}^{\prime}=y_{i}^{\prime}-y_{H_{j}}^{\prime}
\end{align*}
$$

Analogously the corresponding image coordinates $x_{i j}^{\prime \prime} y_{i j}^{\prime \prime}$ in the right frame j result as:

$$
\begin{align*}
& x_{i j}^{\prime \prime}=x_{i}^{\prime \prime}+\Delta x_{j}^{\prime \prime} \tag{9}\\
& y_{i j}^{\prime \prime}=y_{i}^{\prime \prime}-y_{H}^{\prime \prime}
\end{align*} \quad \text { (right image) }
$$

where

$$
\begin{aligned}
& \Delta x_{j}^{\prime}\left(\Delta x_{j}^{\prime \prime}\right) \text { denotes the correction in } x^{\prime}\left(x^{\prime \prime}\right) \text { - direction } \\
& \text { depending on y } y_{j}^{\prime}\left(y_{j}^{\prime \prime}\right) \text { to remove the effect } \\
& \text { of film movement }
\end{aligned}
$$

and

$$
\begin{aligned}
& y_{H_{j}}^{\prime}\left(y_{H j}^{\prime \prime}\right) \text { denotes the y-coordinate of the principal } \\
& \text { point of the considered left (right) frame } \\
& \text { of the stereo pair in the undivided array } \\
& \\
& \text { coordinate system. }
\end{aligned}
$$

3. A MATHEMATICAL MODEL FOR IMAGE GENERATION

As shown in fig. 5 for a focal plane shutter slit, one can establish relationships between the ground coordinates of a point $P\left(x_{i} y_{i} z_{i}\right)$ and its image coordinates in the image j
 the actual projection centre $P_{0}^{\prime}\left(x_{0}^{\prime}\right.$ yo zoo) at time t^{\prime}. These relations are based on the well known central perspective equations and referenced to the individual principal point H_{j}^{j} of frame j.

fig. 5 Central perspective imaging in a slit (left image)

With the notations of figure 5:

$$
\begin{aligned}
x_{i} y_{i} z_{i}= & \text { ground coordinates of the point } P_{i} \\
x_{0}^{\prime} y_{o}^{\prime} z_{o}^{\prime}= & \text { ground coordinates of the projection } \\
& \text { center } P_{o}^{\prime} \text { at the time } t^{\prime} \\
x_{i j}^{\prime} y_{i j}^{\prime}= & \begin{array}{l}
\text { image coordinates of the point } P_{i} \\
\\
c_{j}
\end{array} \quad=\text { principal distance of the image } j .
\end{aligned}
$$

and a general rotation matrix R_{j}^{\prime} resp. $R_{j}^{\prime \prime}$

$$
R_{j}^{\prime}=R_{\nu} \cdot R_{\omega \phi K}^{\prime}=\left[\begin{array}{lll}
r_{11, j}^{\prime} & r_{12, j}^{\prime} & r_{13, j}^{\prime} \tag{10}\\
r_{21, j}^{\prime} & r_{22, j}^{\prime} & r_{23, j}^{\prime} \\
r_{31, j}^{\prime} & r_{32, j}^{\prime} & r_{33, j}^{\prime}
\end{array}\right]
$$

for each image of an array, the image coordinates may be expressed as:

$$
\begin{align*}
& x_{i j}^{\prime}=-c_{j} \frac{r_{11, j}^{\prime}\left(x_{i}-x_{0}^{\prime}\right)+r_{12, j}^{\prime}\left(y_{i}-y_{0}^{\prime}\right)+r_{13, j}^{\prime}\left(z_{i}-z_{0}^{\prime}\right)}{r_{31, j}^{\prime}\left(x_{i}-x_{0}^{\prime}\right)+r_{32, j}^{\prime}\left(y_{i}-y_{0}^{\prime}\right)+r_{33, j}^{\prime}\left(z_{i}-z_{0}^{1}\right)} \tag{11}\\
& y_{i j}^{\prime}=-c_{j} \frac{r_{21, j}^{\prime}\left(x_{i}-x_{0}^{\prime}\right)+r_{22, j}^{\prime}\left(y_{i}-y_{0}^{\prime}\right)+r_{23, j}^{\prime}\left(z_{i}-z_{0}^{\prime}\right)}{r_{31, j}^{1}\left(x_{i}-x_{0}\right)+r_{32, j}^{\prime}\left(y_{i}-y_{0}\right)+r_{33, j}^{1}\left(z_{i}-z_{0}\right)} \\
& x_{i j}^{\prime \prime}=-c_{j} \frac{r_{11, j}^{\prime \prime}\left(x_{i}-x_{0}^{\prime \prime}\right)+r_{12, j}^{\prime \prime}\left(y_{i}-y_{0}^{\prime \prime}\right)+r_{13, j}^{\prime \prime}\left(z_{i}-z_{0}^{\prime \prime}\right)}{r_{31, j}\left(x_{i}-x_{0}^{\prime \prime}\right)+r_{32, j}^{\prime \prime}\left(y_{i}-y_{0}^{\prime \prime}\right)+r_{33, j}^{\prime \prime}\left(z_{i}-z_{0}^{\prime \prime}\right)} \tag{12}\\
& y_{i j}^{\prime \prime}=-c_{j} \frac{r_{21, j}^{\prime \prime}\left(x_{i}-x_{0}^{\prime \prime}\right)+r_{22, j}^{\prime \prime}\left(y_{i}-y_{0}^{\prime \prime}\right)+r_{23, j}^{\prime \prime}\left(z_{i}-z_{0}^{\prime \prime}\right)}{\left.r_{i}^{\prime \prime}-x_{0}^{\prime \prime}\right)+r_{32, j}^{\prime \prime}\left(y_{i}-y_{0}^{\prime \prime}\right)+r_{33, j}^{\prime \prime}\left(z_{i}-z_{0}^{\prime \prime}\right)}
\end{align*}
$$

Note that the coordinates of the projection centres and also the elements of the rotation matrix R_{j} are time-dependent unknowns. Thus considering different points of an image and even more points of different images of an array this time dependency has to be taken into account.

185.

4. A RIGOROUS MATHEMATICAL MODEL FOR THE GEOMETRIC RECONSTRUCTION OF OBJECTS

The orientation of two adjacent image arrays at the moments t' resp. t" may be described by the following parameters:
$x_{0} y_{0} z_{0} \omega \phi \quad \quad$ Orientation unknowns of the left frame array at the time t^{\prime}, which can be related to a certain y^{\prime}-coordinate of the undivided array system (s.fig.4)
and

$$
\begin{aligned}
& \Delta x_{0} \Delta y_{0} \Delta z_{0} \Delta \omega \Delta \phi \Delta k \text { Change of the orientation unknowns from } \\
& \text { time t to the time t" corresponding to } \\
& y^{\prime \prime} \text { in the right image array }
\end{aligned}
$$

Assuming that the camera is equiped with a recording device for the recording of the coordinates of the projection centre xór yor zór, xor yor zör and of the angles wor ór kor kor, wor $\phi_{0}^{\prime \prime} r$ kor at the moments t^{\prime} and $t "$ one can introduce as "observed values":

$$
x_{\text {or }} \Delta x_{o r} y_{\text {or }} \Delta y_{o r} \cdots \cdots \text { kor } \Delta k_{\text {or }} \text {. }
$$

These "observed unknowns" are calculated from the recorded values according to:

$$
\begin{align*}
& x_{o r}=x_{o r}^{\prime} \\
& \Delta x_{o r}=x_{o r}^{\prime \prime}-x_{o r}^{\prime} \\
& \vdots \tag{13}\\
& k_{r}^{\prime}=k_{r}^{\prime} \\
& \Delta k_{r}^{\prime \prime}=k_{r}^{\prime \prime}-k_{r}^{\prime}
\end{align*}
$$

Usually the recorded values of the unknowns will be correlated (correlation coefficient ρ), but of equal accuracy. Thus the corresponding covariance matrix k of every two equations of the system (13) (e. g. Xor Δx or) results as:

$$
k_{x_{o r}}=\sigma_{x_{o r}}^{2} \cdot\left[\begin{array}{cc}
1 & \left(1-\rho_{x_{o r}}\right) \tag{14}\\
\left(1-\rho_{x_{o r}}\right) & 2\left(1-\rho_{x_{o r}}\right)
\end{array}\right]
$$

where σ_{x}^{2} or $i s$ the variance of the recorded values xór xör. By analogy the covariance matrices K_{y} or $K_{z o r} K_{\omega_{r}} K_{\phi_{r}} K_{K_{r}}$ are obtained.
Consequently the 2×2 weight matrices will be obtained as:

$$
\begin{align*}
& P_{x_{o r}}=\sigma_{0}^{2} \cdot K_{x_{o r}}^{-1} \\
& \vdots \tag{15}\\
& P_{k_{r}}=\sigma_{0}^{2} \cdot K_{k_{r}}^{-1}
\end{align*}
$$

with $\sigma_{0}^{2}=$ variance factor.
Denoting with s the distance which is passed by the focal plane shutter between two adjacent recordings, one can calculate for each mission

$$
s=\frac{v_{s}}{\text { number of arrays per second }}
$$

From s the reciprocal value q is obtained as

$$
\begin{equation*}
\left.\mathrm{q}=1 / \mathrm{s} \text { (dimension of } \mathrm{q}: \mathrm{m}^{-1}\right) \text {. } \tag{16}
\end{equation*}
$$

If the velocity v_{s} of the shutter and the frequency of arrays per second are known, q can be treated as an observation. If not, q will be an additional unknown of the adjustment.
Using the value q the individual orientation parameters related to an image slit of array coordinates y^{\prime} or $y^{\prime \prime}$ can be expressed as functions of the orientation unknowns $x_{0} y_{0} z_{0}$ $\omega \phi$ k Δk :

$$
\begin{align*}
& x_{0}^{\prime}=x_{0}+\left(\left(y^{\prime}-1\right) \cdot q\right) \cdot \Delta x_{0} \\
& x_{0}^{\prime \prime}=x_{0}+\left(1+\left(y^{\prime \prime}-1\right) \cdot q\right) \cdot \Delta x_{0} \\
& y_{0}^{\prime}=y_{0}+\quad\left(\left(y^{\prime}-1\right) \cdot q\right) \cdot \Delta y_{0} \\
& y_{0}^{\prime \prime}=y_{0}+\left(1+\left(y^{\prime \prime}-1\right) \cdot q\right) \cdot \Delta y_{0} \\
& z_{0}^{1}=z_{0}+\quad\left(\left(y^{\prime}-1\right) \cdot q\right) \cdot \Delta z_{0} \\
& z_{0}^{\prime \prime}=z_{0}+\left(1+\left(y^{\prime \prime}-1\right) \cdot q\right) \cdot \Delta z_{0} \tag{17}\\
& \omega^{\prime}=\omega+\left(\left(y^{\prime}-1\right) \cdot q\right) \cdot \Delta \omega \\
& \omega^{\prime \prime}=\omega+\left(1+\left(y^{\prime \prime}-1\right) \cdot q\right) \cdot \Delta \omega \\
& \phi^{\prime}=\phi+\quad\left(\left(y^{\prime}-1\right) \cdot q\right) \cdot \Delta \phi \\
& \phi^{\prime \prime}=\phi+\left(1+\left(y^{\prime \prime}-1\right) \cdot q\right) \cdot \Delta \phi \\
& \kappa^{\prime}=\kappa+\left(\left(y^{\prime}-1\right) \cdot q\right) \cdot \Delta \kappa \\
& \kappa^{\prime \prime} \quad k+\left(1+\left(y^{\prime \prime}-1\right) \cdot q\right) \cdot \Delta k
\end{align*}
$$

In these equations for instance

$$
\begin{aligned}
& x_{0}^{\prime} \quad x_{0}^{\prime \prime} \text { are the actual values of the x-coordinates } \\
& \text { of the projection centres at the time given } \\
& \text { by y' resp. y" for the left resp. right image } \\
& \text { slit. }
\end{aligned}
$$

The value 1 is used to fix the origin of time in relation to the y^{\prime} and $y^{\prime \prime}$ coordinate.
With the above 12 unknowns $x_{0} \Delta x_{0} \ldots . . .{ }_{k} \Delta k$ and the additional one introduced as q one gets for every point P_{i} with the unknown ground coordinates $x_{i} y_{i} z_{i}$ and the respective image points $P^{\prime}{ }_{j}\left(x_{i j}^{\prime} y_{i j}^{\prime}-c_{j}\right)$ and $P_{i j}^{\prime \prime}\left(x_{i j}^{\prime \prime} y_{i j}^{\prime \prime}-c_{j}\right) 4$ nonlinear observation equations.

$$
\begin{align*}
& v_{x_{i j}}^{\prime}=f_{x^{\prime}}\left(x_{i} y_{i} z_{i} \quad x_{0} \Delta x_{0} \cdots \kappa \Delta k q\right)-x_{i j}^{\prime} \\
& v_{y_{i j}^{\prime}}^{\prime}=f_{y^{\prime}}\left(x_{i} y_{i} z_{i} \quad x_{0} \Delta x_{0} \cdots \kappa \Delta \kappa q\right)-y_{i j}^{\prime} \\
& v_{x}^{\prime \prime \prime}{ }^{\prime \prime}=f_{x \prime \prime}^{\prime \prime}\left(x_{i} y_{i} z_{i} x_{0} \Delta x_{0} \cdots k \Delta k q\right)-x_{i j}^{\prime \prime} \tag{18}\\
& v_{y i j}^{\prime \prime}=f_{y \prime \prime}^{\prime \prime}\left(x_{i} y_{i} z_{i} x_{0} \Delta x_{0} \ldots k \Delta k q\right)-y_{i j}^{\prime \prime}
\end{align*}
$$

To the above system some observation equations for the "observed unknowns"may be added. In the case of the observed values k_{r} and Δk_{r} the observation equations to be considered are:

> weight matrix

$$
\begin{array}{lll}
v_{k}=k & -k_{r} & P_{k r} \tag{19}\\
v_{\Delta k}= & \Delta k-\Delta k_{r} & (2 \times 2)
\end{array}
$$

Further on it is possible to add an observation equation for the unknown q :

$$
\begin{equation*}
v_{q}=q-q_{r} \quad p_{q_{r}} \tag{20}
\end{equation*}
$$

where q_{r} denotes the "observed value" for q.
The whole system of observation equations can be completed by equations for given control points. Every control point will be introduced into the system by forming a respective observation equation for the x or z coordinate:

All available observation equations are used to formulate a least squares adjustment. Thus the unknown object coordinates and the orientation parameters for each image array are computed.
To keep the solving system of normal equations small, the coordinates of the objects points are eliminated before the solving procedure starts.
The inversion of the whole system of normal equations is used to describe the accuracy of object coordinates as well as of the camera parameters.
5. RESULTS FROM A SYNTHETIC DATA SET

In order to verify the presented mathematical model some assumptions are necessary.
The realization of the interior orientation is assumed as errorfree. The same applies to the value q, which can be considered as known and errorfree.

For a given symmetric point distribution at the ground and having assumed flat terrain, the dynamic image coordinates were computed for a flying height of 100 m . The distribution of the points in the ground and in the single frames of the array are presented in fig. 6.
As focal length of all 5 lenses $c=56.5 \mathrm{~mm}$ was used. A certain value q was introduced and assumed as errorfree.
To demonstrate the effectivness of the rigorous model the following standard deviations where adopted:

$$
\begin{aligned}
& \sigma_{0}= \pm 30 \mu \mathrm{~m} \text { (Accuracy of the image coordinates) } \\
& \sigma_{p c}= \pm 1.0 \mathrm{~m} \begin{array}{c}
\text { (Accuracy of the } x_{0} y_{o} z_{o} \text { coordina- } \\
\text { tes of the projections centres) }
\end{array} \\
& \left.\sigma_{p a}= \pm 0.1 \begin{array}{c}
\text { (Accuracy of } \\
\text { the camera) }
\end{array}\right) \ll \text {, the angles of }
\end{aligned}
$$

Inverting the normal equations one can calculate the accuracy for the object coordinates under the above assumptions.
In figure 7 to each object point the $\sigma_{x} \sigma_{y} \sigma_{z}$ values are noted. The dimension of the given values is m.
On the left hand side of figure 7 only the effect of σ_{0} (accuracy of the image coordinates) is shown. The listed standard deviations present the accuracy level which may be attempted in the ideal case when the accuracy of ground coordinates is affected only by the accuracy of image coordinates measurements. In this special case the elements of exterior orientation are considered as known and errorfree.

On the right hand side the combined effect of $\sigma_{0} \sigma_{p c}$ and $\sigma_{p a}$ is shown. Due to the standard deviations taken into account for the projection centres and the camera angles the accuracy decreases.

fig. 6 Ground coordinates and related image points
for a flying height of $h=100 \mathrm{~m}$

fig. 7 Results from the synthetic data set under different assumptions.
$\sigma_{x} \sigma_{y} \sigma_{z}$ standard deviations of the ground coordi-
6. REFERENCES
/1/ ZEISS, Oberkochen: KRb 6/24. Hochleistungs-Kleinreihenbildner für die Luftbildaufklärung. Geräteprospekt.
/2/ Case, J.B.: The Analytical Reduction of Panoramic and Strip Photography. Photogrammetria 1966-1967.
/3/ Konecny, G.: Geometrische Grundlagen zur Bildauswertung von Kammern mit Schlitzverschlüssen. Festschrift für Walter Höpcke zum 70 Geburtstag. Wissenschaftliche Arbeiten der Lehrstühle für Geodäsie, Photogrammetrie und Kartographie an der TU Hannover, Nr. 83.
/4/ Agapov, S.V.: Geometrical principles of Constructing Image and Methods of Processing the Photos recieved by Cameras with a Curtain Shutter. Paper presented at the Symposium of Commission III of the ISP, Moscow, 1978.
/5/ Malyavsky, B.K.: Analytical Treatment of a pair of focalplane prints. Paper presented at the Symposium of the Commission III of the ISP, Moscow, 1978.

